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Preliminary Definitions

Convexivity

Definition

A convex combination of the set V = {v1,v2, · · · ,vm} is a linear combination such that
the coefficients are all non-negative and sum to 1. The set of all convex combinations of V

C = {
m∑
i=1

λivi | λi ≥ 0 for all i and
m∑
i

λi = 1}

is called the convex hull of V .

Definition

A set C ⊆ Rn is said to be convex when it contains all of its convex combinations.
Equivalently, given any 2 points c1, c2 ∈ C, it follows that λc1 + (1− λ)c2 ∈ C for all
λ ∈ [0, 1].

Figure: A convex subset of R2(left) and a non-convex one (right).
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Preliminary Definitions

Closure of Convex Hulls

Theorem

The convex hull of a set of vectors V = {v1,v2, · · · ,vm} is a closed set.

Proof

Let (xn)→ x0 be a sequence in the convex hull of V . Then for each term we have
xn =

∑m
i=1 λ

n
i vi where each λni ≥ 0 and

∑m
i=1 λ

n
i = 1 for every n ∈ N. Then,

x0 = lim
n→∞

xn = lim
n→∞

m∑
i=1

λni vi =
m∑
i=1

lim
n→∞

(λni )vi

Since each λni is in the closed set [0, 1], we know there exists a convergent subsequence for
each i. We call the limit of this sequence λ0i . Note that λ0i is non-negative. The
corresponding subsequence of (xn) will still converge to x0 since it is already convergent. We
assume for simplicity that (λni ) itself converges. We’ve shown that x0 is a linear combination
of V with coefficients λ0i . All that is left to do is to show that they sum to 1. Indeed,

m∑
i=1

λ0i =
m∑
i=1

lim
n→∞

λni = lim
n→∞

m∑
i=1

λni = lim
n→∞

1 = 1

Thus, x0 is a convex combination of V , and the convex hull is closed.
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Preliminary Definitions

Affine Independence and Simplices

Definition

A the set V = {v1,v2, · · · ,vm} is said to be affine independent when
∑n

i=1 λivi = 0 and∑n
i=1 λi = 0 implies λi = 0 for all i. Equivalently, when the set

{v2 − v1,v2 − v1, · · ·vm − v1} is linearly independent.

Definition

An n-simplex is the convex hull of an affine independent set of n+ 1 vectors. The
standard n-simplex is the convex hull of the standard basis in Rn+1

x

y

(−3, 3)

(−1,−2)

(2, 2)

x

y

(−3, 3)

(−1,−2)

(2, 2)

Figure: The vectors (−3, 3), (−1,−2) and (2, 2) being affine independent can be thought of as
meaning that the vectors are linearly independent from the point of view of (−3, 3).
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Preliminary Definitions

Definition

A set valued function f : A→ B is said to be upper semi-continuous when given sequences
in A (xn)→ x and (yn)→ y such that for all n ∈ N, xn ∈ f(yn), it follows that x ∈ f(y).

Theorem (Kakutani’s Fixed Point Theorem)

Let S be a non-empty, compact and convex subset of Rn, and let Φ : S → P(S) be a
set-valued function such that

i. Φ is upper semi-continuous

ii. Φ(s) is convex for all s ∈ S
Then there exists s0 ∈ S such that s0 ∈ Φ(s0)
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Review of Game Theory Terms

Review of Game Theory Terms

Definition

A finite, n-person normal-form game is a tuple (N,A, u) where

1 N is a set of n players indexed by i

2 A =
∏n

i=1 Ai is the set of action profiles, where each Ai is the set of actions available to
player i.

3 u = (u1, u2, · · ·un) is a utility function u : A→ Rn, where each ui : A→ R is a real
valued utility function for player i

Definition

The mixed extension of the n-person normal-form game (N,A, u) is the tuple (N,S, U) where

1 S =
∏n

i=1 Si where Si is the set of all probability distributions over Ai

2 U = (U1, U2, · · · , Un) where each Ui is defined as a function Ui : S → R

Ui(s) =
∑
a∈A

ui(a)
n∏

i=1

si(ai)
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Review of Game Theory Terms

Review of Game Theory Terms Cont.

Definition

The best response function for player i is a function Bi : S−i → P(Si) is the function

Bi(s−i) = {s∗i ∈ Si | Ui(s
∗
i , s−i) ≥ Ui(si, s−i) for all si ∈ Si}

We extend the best reponse function and Define B : S → P(S)

B(s) =
n∏

i=1

Bi(s−i)

Where
∏

denotes the cartesian product. The function B takes in mixed strategies, and
returns a the optimal strategies that each player should have played for the highest expected
utility. This motivates the following (re)definition:

Definition

A mixed strategy s ∈ S is said to be a Nash equilibrium when s ∈ B(s).

This is because s ∈ B(s) means that for each player, si ∈ Bi(s−i) and so the strategy profile
for each player is already the optimal strategy given the other player’s strategies.
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Kakutani’s Theorem in Game Theory

It is now more clear how Kakutani’s theorem applies to the existence of nash equilibria for
finite games. If we can show that B fulfils the conditions where Kakutani’s theorem applies,
we have proven the existence of nash equilibria.
It has already been argued previously that each Si, forms a standard n− 1-simplex when the
n actions available to player i are interpreted as the standard basis vectors in Rn and their
probailites as the coeffiecients in a linear combination. So each Si is convex and closed. To
fulfil the conditions of Kakutani’s theorem, we need to show that

1 S is compact and convex,

2 B is upper semi-continuous,

3 B(s) is convex for all s ∈ S.
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Kakutani’s Theorem in Game Theory

Applications to Game Theory Cont.

Lemma

The cartesian product of finitely many convex sets is convex

Proof

Let (x1, x2, · · · , xn), (x′1, x
′
2, · · · , x′n) ∈ X1 ×X2 × · · · ×Xn where each Xi is a convex subset

of some euclidean space of arbitrary dimension. Consider the point
λ(x1, · · · , xn) + (1− λ)(x′1, · · · , x′n) where λ ∈ [0, 1]. Then see that

λ(x1, x2, · · · , xn) + (1− λ)(x′1, x
′
2 · · · , x′n) = (λx1 + (1− λ)x′1, · · · , λxn + (1− λ)x′n)

Since each Xi is convex, λxi + (1− λ)x′i ∈ Xi for each i, and so

(λx1 + (1− λ)x′1, λx2 + (1− λ)x′2, · · · , λxn + (1− λ)x′n) ∈ X1 ×X2 × · · · ×Xn

Thus, X1 ×X2 × · · · ×Xn is convex.
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Kakutani’s Theorem in Game Theory

Applications to Game Theory Cont.

Lemma

The cartesian product of finitely many closed sets is closed

Proof

Let X1, X2, · · · , Xk be closed sets and let (xn1 , x
n
2 , · · · , xnk )→ (x1, x2, · · · , xk) be a sequence

where (xn1 , x
n
2 , · · · , xnk ) ∈ X1 ×X2,× · · · ×Xk for all n ∈ N. Then we have for each

1 ≤ i ≤ k, we have the sequence (xni )→ xi where xni ∈ Xi for all n. Then since Xi is closed,
it must be be true that xi ∈ Xi. This is true for each i, so it follows that
(x1, x2, · · · , xk) ∈ X1 ×X2,× · · · ×Xk. Thus, the cartesian product is indeed closed.

The set of mixed strategies for player i, Si is known to be a closed and convex simplex. It
follows fromt the previous 2 lemmas that the set of all mixed strategy profiles
S = S1 × S2 × · · · × Sn is also closed and convex.

Muhammad Haris Rao Kakutani’s Theorem 18 September 2020 11 / 23



Kakutani’s Theorem in Game Theory

Applications to Game Theory

Definition

A set valued function f : A→ B is said to be upper semi-continuous when given sequences
in A (xn)→ x and (yn)→ y such that for all n ∈ N, xn ∈ f(yn), it follows that x ∈ f(y).

Lemma

The best response function B(s) : S → S is upper semi-continuous.

Proof Sketch

1 Consider sequences in S, (rn)→ r0 and (sn)→ s0 be sequences in S such that
rn ∈ B(sn) for all n ∈ N. Assume for contradtiction that r0 /∈ B(s0)

2 Using the fact that Ui is continuous, show that somewhere along the sequence rn

stopped being the best response to sn which would be a contradiction.
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Kakutani’s Theorem in Game Theory

Proof

Let (rn)→ r0 and (sn)→ s0 be sequences in S. Let it also be true that rn ∈ B(sn) for all
n ∈ N. Assume for contradiction that B is not upper semi-continuous, so r0 /∈ B(s0). Then
for some i, we have r0i /∈ Bi(s

0
−i). Then let r′i ∈ Bi(s

0
−i), so there exists ε > 0 such that

Ui(r
′
i, s

0
−i) > Ui(r

0, s0−i) + 3ε

Morover, we can make Ui(r
′
i, s

n
−i) arbitrariliy close to Ui(r

′
i, s

0
−i) by bringing sn−i sufficiently

close to s0−i. So for sufficiently large n, Ui(r
′
i, s

n
−i) > Ui(r

′
i, s

0
−i)− ε

Similarly, Ui(r
n, sn−i) can be made arbitrarily close to Ui(r

0, s0−i) with sufficiently large n.

So Ui(r
0, s0−i) > Ui(r

n, sn−i)− ε
So putting these 3 inequalities together gives

Ui(r
′
i, s

n
−i) > Ui(r

′
i, s

0
−i)− ε > Ui(r

0, s0−i) + 2ε > Ui(r
n, sn−i) + ε

But we had a premise that rn ∈ B(sn), and thus rni ∈ Bi(s
n
−i) for all n. So this is a

contradiction and so we conclude that B is upper semi-continuous as desired.

This fulfils the second requirement
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Kakutani’s Theorem in Game Theory

Applications to Game Theory

Lemma

For all s ∈ S, the set B(s) is convex

Proof

Let sk ∈ Sk be such that sk = λsk1
+ (1− λ)sk2

where sk1
, sk2

∈ Sk and 0 ≤ λ ≤ 1. We will
first demonstrate that Ui(sk, s−k) = λUi(sk1

, s−k) + (1− λ)Ui(sk1
, s−k) This is easy to show

Ui(s1, · · · , sk, · · · sn) = Ui(s1, · · · , λsk1
+ (1− λ)sk2

, · · · sn)

=
∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

(λsk1
(ak) + (1− λ)sk2

(ak)
) n∏

j=k+1

sj(aj)


=
∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 (λsk1
(ak))

 n∏
j=k+1

sj(aj)


+
∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 ((1− λ)sk2
(ak))

 n∏
j=k+1

sj(aj)


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Kakutani’s Theorem in Game Theory

Applications to Game Theory

Ui(s1, · · · , sk, · · · sn) = λ
∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 sk1
(ak)

 n∏
j=k+1

sj(aj)


+ (1− λ)

∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 sk2
(ak)

 n∏
j=k+1

sj(aj)


= λUi(s1, · · · , sk1

, · · · , sn) + (1− λ)Ui(s1, · · · , sk2
, · · · , sn)

The rest of the proof is straightforward as well. Let s−i ∈ S−i and b1, b2 ∈ Bi(s−i). Then
Ui(b1) = Ui(b2) and so

Ui(λb1 + (1− λ)b2, s−i) = λUi(b1, s−i) + (1− λ)Ui(b2, s−i)

= λUi(b1, s−i) + (1− λ)Ui(b1, s−i)

= Ui(b1, s−i)

Then λb1 + (1− λ)b2 ∈ Bi(s−i), so Bi(s−i) is convex for all s−i ∈ S−i each player i. Thus,
B(s), the cartesian product of each Bi(s−i) is also convex.

All requirements for Kakutani’s Theorem have now been demonstrated. We can now prove
Nash’s theorem for the existence of Nash equilibria for mixed extensions.
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Kakutani’s Theorem in Game Theory

Applications to Game Theory Cont.

Theorem (Nash’s Theorem)

Every mixed extension of a finite n-person normal-form game has a Nash equilibrium

Proof

Let (N,S, U) be a mixed extension of a finite n-person normal-form game. It has been shown
that S is a compact and convex set, and that the function B : S → S is upper-semi
continuous. Moreover, B(s) is convex for every s ∈ S. Then applying Kakutani’s fixed point
theorem, there exists s0 ∈ S such that s0 ∈ B(s0).
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Kakutani’s Theorem

Subdivisions and Triangulations

Definition

Let ∆n be a standard n-simplex. A triangulation of ∆n is a finite collection
S = {S1, S2, S3, · · ·Sm} such that

1 Si ⊆ ∆n for all i ∈ {1, 2, · · · ,m}
2 Each Si is an n-simplex

3 Si ∩ Sj is empty, or an m-simplex which is a face shared by Si and Sj whenever i 6= j

4 ∪mi=1Si = ∆n

Intuitively, a triangulation of an n-simplex is just cutting up the simplex into smaller
simplices.

Figure: A triangulation of a standard 2-simplex
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Kakutani’s Theorem

Theorem (Brouwer’s Fixed Point Theorem)

Let f : ∆n → ∆n be a continuous function. Then there exists x ∈ ∆n such that x = f(x).

Theorem (Kakutani’s Theorem for n-simplices)

Let Φ(x) : ∆n → P(∆n) be an upper semi-continuous function such that Φ(x) is a convex set
for all x ∈ ∆n. Then there exists x0 ∈ ∆n such that x0 ∈ Φ(x0)
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Kakutani’s Theorem

Proof Sketch

1 Construct a series of triangulations (Ti) where the mesh goes to 0

2 Define a function ϕi on each triangulation which maps each vertex of Ti to some element
of its image under Φ

3 Extend the function linearly over each sub-simplex. Appeal to Brouwer’s fixed point
theorem and denote the fixed point as xi.

4 The sequence of xi is in a compact set, so denote the limit x0.

5 Each xi is a convex combination of the vertices of the simplex in Ti it is contained in.
For each Ti, number the vertices of this simplex with 1, 2, · · · , n+ 1. The vertices
numbered 1 form a sequence, and so do those numbered 2, and so on.

6 We also define for each sequence of vertices a sequence of the image of each vertex under
ϕi. We have n+ 1 sequences of vertices, and their corresponding images under ϕi. Each
has convergent subsequence.

7 As i→∞, the mesh approaches 0 so each sequence of vertices in fact approaches x0.

8 The sequence of vertices approaches the limit x0, and the sequence of the images of the
vertices under ϕi approaches a limit. Each term of the latter is contained within the
image of each term of the former under Φ. By upper semi-continuity, the limit of the
images of the vertices under ϕi is contained in the image of x0 under Φ.

9 Show that x0 is in fact a convex combination of the limits of the images of the vertices
under ϕi.

10 The result follows from the fact that Φ maps to convex sets
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Kakutani’s Theorem

Kakutani’s Theorem

Theorem (Kakutani’s Theorem for n-simplices)

Let Φ(x) : ∆n → P(∆n) be an upper semi-continuous function such that Φ(x) is a convex set
for all x ∈ ∆n. Then there exists x0 ∈ ∆n such that x0 ∈ Φ(x0)

Proof

We again have a sequence of triangulations (Ti)i∈N on the n-simplex ∆n such that the mesh
approaches 0. Let Vi = {vi

1,v
i
2,v

i
3, · · ·vi

ni
} be the vertices in Vi. For each triangulation Ti,

we will define a function ϕi : ∆n → ∆n as follows.
For each vertex vi

j ∈ Vi, we will define ϕi(v
i
j) as any of the vectors in Φ(vi

j). That is,

ϕi(v
i
j) ∈ Φ(vi

j) for all vi
j ∈ Vi. Next we extend ϕi linearly over each simplex in Ti. That is,

if x is in the simplex with vertices ui
1,u

i
2, · · · ,ui

n+1, then

x =
n∑

j=1

αi
ju

i
j

Where αi
k ≥ 0 for all k ∈ {1, 2, 3, · · ·n+ 1} and

∑n
j=1 α

i
j = 1. Then ϕi(x) is defined as

ϕi(x) = ϕi

n+1∑
j=1

αi
ju

i
j

 =

n+1∑
j=1

αi
jϕi(u

i
j)
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Kakutani’s Theorem

Kakutani’s Theorem Cont.

See that each ϕi : ∆n → ∆n is a continuous function between compact sets. So by Brouwer’s
fixed point theorem, there is a fixed point for each ϕi which we will denote xi. Such a point
is defined for each Ti, so in fact we have a sequence of points (xi)i∈N which is clearly
bounded in the compact set ∆n. So there is a convergent subsequence. To avoid having to
use more complicated indexing, we assume (xi)i∈N is indeed such a subsequence and
lim
i→∞

xi = x0. We claim this is the desired fixed point.

Each xi is contained in a simplex of Ti with vertices wi
1,w

i
2, · · · ,wi

n+1. So we also have

bounded sequences (wi
k)i∈N for each k ∈ {1, 2, · · · , n+ 1}, and these also contain convergent

subsequences. We again assume they are themselves are convergent for simplicity and for
each k, lim

i→∞
wi

k = w0
k. Moreover, xi may be expressed as a convex combination

xi =

n+1∑
j=1

λijw
i
j

With the usual restriction on each λij . The image of each wi
j under ϕi will be denoted yi

j .

Because the sequence (wi
k)i∈N converges, the sequence (yi

k)i∈N will also converge since ϕi is

continuous. Let this limit be y0
k. Similarly, let (λik)i∈N → λ0k.
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Kakutani’s Theorem

Kakutani’s Theorem Cont.

Putting all these limits together gives the following

x0 = lim
i→∞

xi = lim
i→∞

ϕi(x
i) = lim

i→∞
ϕi

n+1∑
j=1

λijw
i
j

 = lim
i→∞

n+1∑
j=1

λijϕi(w
i
j)


= lim

i→∞

n+1∑
j=1

λijy
i
j

 =

n+1∑
j=1

lim
i→∞

λij lim
i→∞

yi
j =

n+1∑
j=1

λ0jy0
j

Moreover,
n+1∑
j=1

λ0j =

n+1∑
j=1

lim
i→∞

λij = lim
i→∞

n+1∑
j=1

λij = lim
i→∞

1 = 1

Each λ0k is in the set [0, 1] since they are limits of sequences in this closed set. So x0 is a
convex combination of the set {y0

1,y
0
2, · · · ,y0

n+1}.
Going back to the sequence (wi

k)i∈N, we said that this conveges to w0
k for each k. We defined

these to be the vertices of the simplex in Vi containing the fixed point xi. The simpleces in
the triangulations all approach 0, so it is not hard to show that each of these sequence in fact
converges to the limit of (xi)i∈N. That is, x0.

Muhammad Haris Rao Kakutani’s Theorem 18 September 2020 22 / 23



Kakutani’s Theorem

Kakutani’s Theorem Cont.

So we have for each triangulation k the following

(wi
k)i∈N → x0

(yi
k)i∈N → y0

k

yi
k = ϕi(w

i
k) ∈ Φ(wi

k)

From the upper semi-continuity of Φ, it follows that y0
k ∈ Φ(x0) for each k. But one of the

premises is that Φ maps to convex sets. So any convex combination of {y0
1,y

0
2, · · · ,y0

n+1}
must also be in Φ(x0). We have already shown that x0 is such a convex combination, so we
conclude that x0 ∈ Φ(x0) as desired.
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