
Kakutani’s Fixed-Point Theorem
And its Applications to Game Theory

Definition. A convex combination of the set V = {v1, v2, · · · , vm} is a linear combination such that
the coefficients are all non-negative and sum to 1. The set of all convex combinations of V

C = {
m∑
i=1

λivi | λi ≥ 0 for all i and

m∑
i

λi = 1}

is called the convex hull of V .

Definition. A set C ⊆ Rn is said to be convex when it contains all of its convex combinations. Equiv-
alently, given any 2 points c1, c2 ∈ C, it follows that λc1 + (1− λ)c2 ∈ C for all λ ∈ [0, 1].

The points λc1 + (1 − λ)c2 ∈ C are just the points on the line segment between c1 and c2. In other
words, the 1-simplex of these two. For example, the point when λ = 0 is c2 and when λ = 1 we have c1.
When λ = 1

2 we have the point exactly in between c1 and c2, and when λ = 1
3 we have the point 1 third

the way from c2 to c1 (closer to c2) and so on.

Figure 1: A convex subset of R2(left) and a non-convex one (right).

Definition. A the set V = {v1, v2, · · · , vm} is said to be affine independent when
∑n

i=1 λivi = 0 and∑n
i=1 λi = 0 implies λi = 0 for all i. Equivalently, when the set {v2− v1, v2− v1, · · · vm− v1} is linearly

independent.

Definition. An n-simplex is the convex hull of an affine independent set of n+1 vectors. The standard
n-simplex is the convex hull of the standard basis in Rn+1
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Figure 2: The vectors (−3, 3), (−1,−2) and (2, 2) being affine indepen-
dent can be thought of as meaning that the vectors are linearly indepen-
dent from the point of view of (−3, 3).

Definition. If S is an n-simplex whose vertices are the set V = {v1, v2, · · · , vn+1}, then a face of S is
a simplex whose vertices are a subset of V . A face is a proper face when its vertices are a strict subset
of V .

Definition. Let S be an n-simplex. A triangulation of S is a finite collection T = {S1, S2, S3, · · ·Sm}
such that

1. Si ⊆ S for all i ∈ {1, 2, · · · ,m}

2. Each Si is an n-simplex
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Figure 3: A triangulation of a standard 2-simplex

3. If i 6= j, then Si ∩ Sj is empty, or is an m-simplex which is a proper face shared by Si and Sj

4. ∪mi=1Si = S

Intuitively, a triangulation of an n-simplex is just cutting up the simplex into smaller simplices.
Here is a useful theorem about n-simplices being closed sets:

Theorem. The convex hull of a set of vectors V = {v1, v2, · · · , vm} is a closed set.

Proof. Let (xn)→ x0 be a sequence in the convex hull of V . Then for each term we have xn =
∑m

i=1 λ
n
i vi

where each λni ≥ 0 and
∑m

i=1 λ
n
i = 1 for every n ∈ N. Then,

x0 = lim
n→∞

xn = lim
n→∞

m∑
i=1

λni vi =

m∑
i=1

lim
n→∞

(λni )vi

Since each λni is in the closed set [0, 1], we know there exists a convergent subsequence for each i. We call
the limit of this sequence λ0i . Note that λ0i is non-negative. The corresponding subsequence of (xn) will
still converge to x0 since it is already convergent. We assume for simplicity that (λni ) itself converges.
We’ve shown that x0 is a linear combination of V with coefficients λ0i . All that is left to do is to show
that they sum to 1. Indeed,

m∑
i=1

λ0i =

m∑
i=1

lim
n→∞

λni = lim
n→∞

m∑
i=1

λni = lim
n→∞

1 = 1

Thus, x0 is a convex combination of V , and the convex hull is closed.
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Brouwer’s Fixed Point Theorem

In this section, we prove Brouwer’s fixed point theorem for the case of continuous functions from an
n-simplex to itself. This is a combinatorial proof, and so we will introduce some background material
first.

Definition. A graph G is a pair (V,E) where V is a (finite) set of vertices, and E a set of pairs of
vertices from V . The degree of a vertex is the number of pairs in E it appears in.

Intuitively, a graph is a set of vertices, which we will from now on call nodes so as to not confuse with
the vertices of simplices, and edges connecting the nodes in different ways. The degree of a node is the
amount of nodes it is connected to.
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Figure 4: A graph with each node labelled with its degree

There are many applications of these graphs. For example, they may represent social connections on
social media such as facebook, where each account is a node, and nodes are connected when the accounts
they represent are friends. There are many other things that can be done, for example, we can also
associate ’weights’ with each edge to give a sense of how strongly two nodes are connected, or we can
also have directed graphs where the edges have a direction to them. This can be useful to represent
connections which are not necessarily mutual. For example, on twitter, you can follow people who may
not follow you or vice versa, which is different from social sites like facebook where a friend connection
is mutual.

Lemma (Handshaking Lemma). For any graph G, the number of nodes of odd degree is even.

Proof. Summing up the degrees of all nodes counts over each edge twice. This is because each edge
contributes to the degree of the two nodes it connects. This means, the sum of all the degrees is twice
the number of edges. So it is even. This can only be true if there are evenly many nodes of odd degree.

Informally, if you have some number of people at a party shaking each other’s hands (not counting one
person shaking the same hand twice), there is an even number of people who shook the hands of an odd
number of other people.

Definition (Sperner Colouring). Let S be an n-simplex and T a triangulation of S. Let V = {v1, v2, · · · , vn+1}
be the set of vertices of simplices in T . Then a function f : V → {1, 2, · · · , n, n+1} is a Sperner colouring
when the following hold:

1. For each vk ∈ V , f(vk) = k.

2. If u is a vertex of a simplex in T and is located on a subface of S formed by the vertices vn1 , vn2 , · · · , vnk
,

then f(u) ∈ {n1, n2, · · · , nk}

The numbers in the set {1, 2, · · · , n, n+1} can instead be thought of as a set of n+1 colours, with which
we are colouring the vertices (hence the name). See figure 5.
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Figure 5: A Sperner colouring of a 2-simplex. The vertices of the triangulation on
each edge of the large triangle are only coloured with the colours of the vertices of
that edge. Moreover, each vertex of the large triangle is of a different colour.

Lemma (Sperner’s Lemma). Let T be a triangulation of an n-simplex S, where V denotes the set of
vertices of simplices in the triangulation. Let f : V → {1, 2, · · · , n + 1} be a Sperner colouring. Then
there exists at least one sub-simplex S′ ∈ T which is coloured with all n + 1 colours. Moreover, there
exist an odd number of such simplices.

Proof. The case for a 1-simplex is easy. Let T be a triangulation of this simplex. By the Sperner
colouring rules, one end of this simplex is of colour 1, and the other of colour 2. Moving from one end
sequentially through the vertices of the triangulation, the colours of the vertices must switch between 1
and 2 an odd number of times in order to start at 1 and end at 2.

For the induction step, assume that the lemma holds on any n−1-simplex, and consider an n-simplex
S with vertices s1, s2, · · · , sn+1. Let T be a triangulation of the n-simplex, and let each vertex in T be
coloured with the colours {1, 2, · · · , n + 1} in accordance with the rules of a Sperner colouring and for
simplicity, assume each sk is coloured k for each 1 ≤ k ≤ n+1. We construct a graph G as follows. Each
simplex in T is represented by a node, and there is one more node representing the (closed) region outside
the simplex. Clearly, given any two distinct nodes in G, the intersection of the regions represented by
them is either empty, or an m-simplex where m < n. Two nodes will be connected precisely when this
intersecion is a simplex whose vertices are coloured with all the colours {1, 2, · · · , n} (but not n+ 1).

Note that only simplices in T which have a face on the boundary of S can be can share a region with
the exterior. More importantly, only the (n − 1)-simplices on the face of S with vertices s1, s2, · · · , sn
can be coloured with the colours required for a connection. This is a consequence of the rules of a
Sperner colouring. Then by the induction hypothesis, there are an odd number of nodes connected to
the external node. It follows from the handshaking lemma that there exist an odd number of nodes
representing simplices in T which are connected to oddly many other nodes.

Now consider a simplex in T represented by a node of degree 2 or greater. This simplex has n + 1
vertices, and n of them are coloured with the colours {1, 2, · · · , n}. The remaining vertex cannot be
coloured n + 1, otherwise its node would not have a degree of at least 2. So it is coloured one of the
colours {1, 2, · · · , n}. Then by simple counting, exactly two of the faces of this simplex are coloured
with each of {1, 2, · · · , n}, and so its node is connected to exactly 2 others. So every simplex in T has a
node of degree either 0, 1, or 2. Since there must be an odd number of simplices in T with nodes of odd
degree, there is a simplex with node of degree 1. It is easy to see that this simplex is fully coloured with
the colours {1, 2, · · · , n+ 1} which is what we wanted to show.

This lemma will be quite useful in proving Brouwer’s fixed point theorem. The general idea is to take
a sequence of triangulations where the simplices become arbitrarily small on a standard n-simplex, and
define a Sperner colouring on the vertices of each triangulation. Then we have a sequence of simplices
in each triangulation which are fully coloured with all the colours. The vertices of these simplices form
sequencs which approach a single point due to the fact that the vertices of a simplex in the triangulations
become arbitralily close to one another. This point turns out to be the required fixed point.

Theorem (Brouwer’s Fixed Point Theorem for n-simplices). Let ∆n be the standard n-simplex in Rn+1,
and let f : ∆n → ∆n be a continuous function. There exists a point x ∈ ∆n such that x = f(x).
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Proof. Let (Ti) be a sequence of triangulations of ∆n where the diameter’s approach 0, and let Vi =
{vi

1,v
i
2,v

i
3, · · ·vi

ni
} be the set of vertices for all simplices in the triangulation. For this proof, we will

denote that kth entry of a vector vi
j as [vi

j ]k.
We will now define for each Ti a function λi : Vi → {1, 2, · · · , n+ 1} as follows. Consider an arbitrary

vertex v ∈ Vi. By the definition of the standard n-simplex, the entries of v sum up to 1. Similarly for
the vector f(v). Clearly then, there is an entry of v which is greater than or equal to the corresponding
entry in f(v) and strictly positive. The index of this entry will be the image of v under the function
λi. It is easy to verify that this is a Sperner colouring. Each vertex of the large simplex ∆n only has
one non-zero entry, and the index of this entry will be its image under λi. Clearly, each of these vertices
will have a different colour. For simplicity, let these vertices be s1, s2, · · · , sn+1 where each sk is the kth
standard basis vector of Rn+1, and so λi(sk) = k for each. The second rule is fulfilled by the observation
that if a vertex of the triangulation is on a subface of ∆n with vertices sn1 , sn2 , · · · , snk

, then it is a
convex combination of these and so only the entries indexed n1, n2, · · · , nk can be non-zero. So the
colour of this vertex is one of n1, n2, · · · , nk as desired.

Then applying Sperner’s lemma, there exists an n-simplex Si ∈ Ti for each triangulation Ti such that
the vertices of Si are {si1, si2, · · · sin, sin+1} ⊆ Vi and λi(s

i
k) = k for all k ∈ {1, 2, 3, · · · , n+ 1}.

Consider the kth vertex of each Si, and we have the sequence (sik)i∈N for each k ∈ {1, 2, 3, · · · , n+1}.
That is, we have a sequence of vertices for each colour. Each is bounded within the compact set ∆n, so by
the Bolzano-Weierstrass theorem, contains a convergent subsequence. For simplicity, assume each (sik)i∈N
itself is the convergent subsequence, and denote the limit s0k. However, note that the triangulations
become arbitrarily fine, so the sequences all approach the same limit. That is, s01 = s02 = s03 = · · · = s0n+1.
We call this point x0, and we will now show that this is the desired fixed point of the continuous function
f .

By continuity, because [sik]k ≥ [f(sik)]k for every triangulation Ti, it follows that the kth entry of the
limit is also at least as large as the kth entry of its image under f . So [x0]k ≥ [f(x0)]k. This is true for
every entry of x0 since it is the limit of (sik)i∈N for every k. But to ensure that the sum of the entries of
both x and f(x0) sum to 1, the inequalities must in fact be equalities. That is, [x0]k = [f(x0)]k for each
k ∈ {1, 2, · · · , n+ 1}. Thus, x0 = f(x0) as desired.

This is a special case of the foull Brouwer fixed point theorem. The general statement is as follows:

Theorem (Brouwer’s Fixed Point Theorem). If K is a non-empty, compact, and convex subset of Rn,
and f : K → K is continuous, then there exists x ∈ K such that x = f(x).
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Kakutani’s Theorem

Theorem (Kakutani’s Theorem for n-simplices). Let Φ(x) : ∆n → P(∆n) be an upper semi-continuous
function such that Φ(x) is a non-empty, convex set for all x ∈ ∆n. Then there exists x0 ∈ ∆n such that
x0 ∈ Φ(x0)

Proof sketch.

1. Construct a series of triangulations (Ti) where the mesh goes to 0

2. Define a function ϕi on each triangulation which maps each vertex of Ti to some element of its
image under Φ

3. Extend the function linearly over each sub-simplex. Appeal to Brouwer’s fixed point theorem and
denote the fixed point as xi.

4. The sequence of xi is in a compact set, so denote the limit x0.

5. Each xi is a convex combination of the vertices of the simplex in Ti it is contained in. For each Ti,
number the vertices of this simplex with 1, 2, · · · , n+ 1. The vertices numbered 1 form a sequence,
and so do those numbered 2, and so on.

6. We also define for each sequence of vertices a sequence of the image of each vertex under ϕi. We
have n + 1 sequences of vertices, and their corresponding images under ϕi. Each has convergent
subsequence.

7. As i→∞, the mesh approaches 0 so each sequence of vertices in fact approaches x0.

8. The sequence of vertices approaches the limit x0, and the sequence of the images of the vertices
under ϕi approaches a limit. Each term of the latter is contained within the image of each term of
the former under Φ. By upper semi-continuity, the limit of the images of the vertices under ϕi is
contained in the image of x0 under Φ.

9. Show that x0 is in fact a convex combination of the limits of the images of the vertices under ϕi.

10. The result follows from the fact that Φ maps to convex sets

Proof. We again have a sequence of triangulations (Ti)i∈N on the n-simplex ∆n such that the mesh
approaches 0. Let Vi = {vi

1,v
i
2,v

i
3, · · ·vi

ni
} be the vertices in Vi. For each triangulation Ti, we will define

a function ϕi : ∆n → ∆n as follows.
For each vertex vi

j ∈ Vi, we will define ϕi(v
i
j) as any of the vectors in Φ(vi

j). That is, ϕi(v
i
j) ∈ Φ(vi

j)

for all vi
j ∈ Vi. Next we extend ϕi linearly over each simplex in Ti. That is, if x is in the simplex with

vertices ui
1,u

i
2, · · · ,ui

n+1, then

x =

n∑
j=1

αi
ju

i
j

Where αi
k ≥ 0 for all k ∈ {1, 2, 3, · · ·n+ 1} and

∑n
j=1 α

i
j = 1. Then ϕi(x) is defined as

ϕi(x) = ϕi

n+1∑
j=1

αi
ju

i
j

 =

n+1∑
j=1

αi
jϕi(u

i
j)

See that each ϕi : ∆n → ∆n is a continuous function between compact sets. So by Brouwer’s fixed point
theorem, there is a fixed point for each ϕi which we will denote xi. Such a point is defined for each Ti,
so in fact we have a sequence of points (xi)i∈N which is clearly bounded in the compact set ∆n. So there
is a convergent subsequence. To avoid having to use more complicated indexing, we assume (xi)i∈N is
indeed such a subsequence and lim

i→∞
xi = x0. We claim this is the desired fixed point.

Each xi is contained in a simplex of Ti with vertices wi
1,w

i
2, · · · ,wi

n+1. So we also have bounded
sequences (wi

k)i∈N for each k ∈ {1, 2, · · · , n + 1}, and these also contain convergent subsequences. We
again assume they are themselves are convergent for simplicity and for each k, lim

i→∞
wi

k = w0
k. Moreover,

xi may be expressed as a convex combination
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xi =

n+1∑
j=1

λijw
i
j

With the usual restriction on each λij . The image of each wi
j under ϕi will be denoted yi

j . Because

the sequence (wi
k)i∈N converges, the sequence (yi

k)i∈N will also converge since ϕi is continuous. Let this
limit be y0

k. Similarly, let (λik)i∈N → λ0k.
To summarise, we have defined a function ϕi for each tringulation Ti on ∆n and defined its fixed

point as xi. This fixed point must be contaied in some simplex of the triangulation Ti, and we numbered
the vertices from 1 to n + 1. The vertices numbered k form a sequence which we denote (wi

k)i∈N.
Similarly, we have defined for the sequence of vertices numbered k a sequence of their images under its
corresponding function ϕi, and we denote this (yi

k)i∈N. Since each fixed point is a convex combination
of the vertices of the simplex in Ti it is located in, we have defined sequences of the coefficiens as well.
Putting all these limits together gives the following

x0 = lim
i→∞

xi = lim
i→∞

ϕi(x
i) = lim

i→∞
ϕi

n+1∑
j=1

λijw
i
j

 = lim
i→∞

n+1∑
j=1

λijϕi(w
i
j)


= lim

i→∞

n+1∑
j=1

λijy
i
j

 =

n+1∑
j=1

lim
i→∞

λij lim
i→∞

yi
j =

n+1∑
j=1

λ0jy
0
j

Moreover,
n+1∑
j=1

λ0j =

n+1∑
j=1

lim
i→∞

λij = lim
i→∞

n+1∑
j=1

λij = lim
i→∞

1 = 1

Each λ0k is in the set [0, 1] since they are limits of sequences in this closed set. So x0 is a convex
combination of the set {y0

1,y
0
2, · · · ,y0

n+1}.
Going back to the sequence (wi

k)i∈N, we said that this conveges to w0
k for each k. We defined these to

be the vertices of the simplex in Vi containing the fixed point xi. The simpleces in the triangulations all
approach 0, so it is not hard to show that each of these sequence in fact converges to the limit of (xi)i∈N.
That is, x0. So we have for each triangulation k the following

(wi
k)i∈N → x0

(yi
k)i∈N → y0

k

yi
k = ϕi(w

i
k) ∈ Φ(wi

k)

From the upper semi-continuity of Φ, it follows that y0
k ∈ Φ(x0) for each k. But one of the premises is

that Φ maps to convex sets. So any convex combination of {y0
1,y

0
2, · · · ,y0

n+1} must also be in Φ(x0). We
have already shown that x0 is such a convex combination, so we conclude that x0 ∈ Φ(x0) as desired.

Like Brouwer, this is also just a special case of the full Kakutani fixed point theorem. The full theorem
applies to arbitrary non-empty, compact and convex subsets of Euclidean space and not just simplices.

Theorem (Kakutanis fixed point theorem). Let S be a non-empty, compact and convex subset of Eu-
clidean space, and let Φ : S → P(S) be a set valued function such that

1. Φ is upper-semicontinuous

2. Φ(s) is non-empty and convex for all s ∈ S

Then there exists s0 ∈ S such that s0 ∈ Φ(s0).

This more general statement is the one we will need in order to prove the existence of Nash equilibria
for mixed extensions.
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Review of Game Theory Terms

Definition. A finite, n-person normal-form game is a tuple (N,A, u) where

1. N is a set of n players indexed by i

2. A =
∏n

i=1Ai is the set of action profiles, where each Ai is the set of actions available to player i.

3. u = (u1, u2, · · ·un) is a utility function u : A→ Rn, where each ui : A→ R is a real valued utility
function for player i

Definition. The mixed extension of the n-person normal-form game (N,A, u) is the tuple (N,S, U)
where

1. S =
∏n

i=1 Si where Si is the set of all probability distributions over Ai

2. U = (U1, U2, · · · , Un) where each Ui is defined as a function Ui : S → R

Ui(s) =
∑
a∈A

ui(a)

n∏
i=1

si(ai)

Definition. The best response function for player i is a set-valued function Bi : S−i → P(Si) where

Bi(s−i) = {s∗i ∈ Si | Ui(s
∗
i , s−i) ≥ Ui(si, s−i) for all si ∈ Si}

A minor detail is that the best response does indeed exist for every s ∈ S. Since Ui is defined on a
compact set, and is continuous, the extreme value theorem applies and the best response does indeed
exist for all points in the domain.

We extend the best reponse function and define B : S → P(S)

B(s) =

n∏
i=1

Bi(s−i)

Where
∏

denotes the cartesian product. The function B takes in mixed strategies, and returns a the
optimal strategies that each player should have played for the highest expected utility. This motivates
the following (re)definition:

Definition. A mixed strategy s ∈ S is said to be a Nash equilibrium when s ∈ B(s).

This is because B(s) is the cartesian product of all the players’ individual best response functions. So
s ∈ B(s) means that for each player, si ∈ Bi(s−i) and so the strategy profile for each player is already
the optimal strategy given the other player’s strategies, which is how Nash equilibria were defines before.

It is now more clear how Kakutani’s fixed-point theorem applies to game theory. The cartesian
product of all the players’ best response functions is a set valued function taking in mixed strategies
and outputting a set of of lists whose entries are the possible optimal strategies each player could have
played. If each player has already played an optimal strategy such that they cannot expect a strictly
higher utility by changing, then the input of the function B will be in its output. So the Nash Equilibrium
is a fixed point of a set-valued function. So if we can just verify the conditions under which Kakutani’s
fixed point theorem applies, we can easily prove the existence of Nash equilibria of mixed extensions of
finite n-person normal form games.

It has bee argued that the set of mised strategies for player i can be seen as a standard simplex.
Say the player has n + 1 possible actions. Then each action can be thought of as one of the standard
basis vectors in Rn+1. Then extend this idea to mixed strategy profiles by weighing each vector by it
probability so that we have a set of points in Rn+1 which is a linear combination of the basis vectors such
that the coefficients of the combinations are non-negative and sum to 1; this is by definition a standard
n-simplex.

All that is left to show is that :

1. S, the cartesian product of each Si is compact and convex,

2. B is upper semi-continuous,

3. B(s) is convex for all s ∈ S.

And then we will know that Kakutani’s theorem applies.
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Game Theory and Kakutani’s Theorem

Lemma. The cartesian product of finitely many convex sets is also convex.

Proof. Let (x1, x2, · · · , xn), (x′1, x
′
2, · · · , x′n) ∈ X1 ×X2 × · · · ×Xn where each Xi is a convex subset of

some euclidean space of arbitrary dimension. Consider the point λ(x1, · · · , xn) + (1 − λ)(x′1, · · · , x′n)
where λ ∈ [0, 1]. Then see that

λ(x1, x2, · · · , xn) + (1− λ)(x′1, x
′
2 · · · , x′n) = (λx1 + (1− λ)x′1, · · · , λxn + (1− λ)x′n)

Since each Xi is convex, λxi + (1− λ)x′i ∈ Xi for each i, and so

(λx1 + (1− λ)x′1, λx2 + (1− λ)x′2, · · · , λxn + (1− λ)x′n) ∈ X1 ×X2 × · · · ×Xn

Thus, X1 ×X2 × · · · ×Xn is convex.

Lemma. The cartesian product of finitely many closed sets is also closed.

Proof. Let X1, X2, · · · , Xk be closed sets and let (xn1 , x
n
2 , · · · , xnk )→ (x1, x2, · · · , xk) be a sequence where

(xn1 , x
n
2 , · · · , xnk ) ∈ X1 × X2,× · · · × Xk for all n ∈ N. Then we have for each 1 ≤ i ≤ k, we have the

sequence (xni ) → xi where xni ∈ Xi for all n. Then since Xi is closed, it must be be true that xi ∈ Xi.
This is true for each i, so it follows that (x1, x2, · · · , xk) ∈ X1 × X2,× · · · × Xk. Thus, the cartesian
product is indeed closed.

This completes the first requirement which says that we want S to be compact. By the Heine Borel
theorem this is the same as a set being closed and bounded. It is clear that the standard n-simplices
are bounded sets in Euclidian space, and so their cartesian product should be bounded in its Euclidean
space. A more general result about the cartesian product of compact spaces being compact is Tychonoff’s
theorem which holds for arbitrary topological spaces, although this result looks far too technical.

We now go on to show that B is an upper-semi continuous function.

Lemma. The best response function B(s) : S → S is upper semi-continuous.

The proof for this is quite heavy in notation and confusing. The following is a proof sketch:

1. Consider sequences in S, (rn)→ r0 and (sn)→ s0 be sequences in S such that rn ∈ B(sn) for all
n ∈ N. Assume for contradtiction that r0 /∈ B(s0)

2. Using the fact that Ui is continuous, show that somewhere along the sequence rn stopped being
the best response to sn which would be a contradiction.

Proof. Let (rn)→ r0 and (sn)→ s0 be sequences in S. Let it also be true that rn ∈ B(sn) for all n ∈ N.
Assume for contradiction that B is not upper semi-continuous, so r0 /∈ B(s0). Then for some i, we have
r0i /∈ Bi(s

0
−i). Then let r′i ∈ Bi(s

0
−i), so there exists ε > 0 such that

Ui(r
′
i, s

0
−i) > Ui(r

0, s0−i) + 3ε

Morover, we can make Ui(r
′
i, s

n
−i) arbitrariliy close to Ui(r

′
i, s

0
−i) by bringing sn−i sufficiently close to s0−i.

So for sufficiently large n,
Ui(r

′
i, s

n
−i) > Ui(r

′
i, s

0
−i)− ε

Similarly, Ui(r
n, sn−i) can be made arbitrarily close to Ui(r

0, s0−i) with sufficiently large n. So

Ui(r
0, s0−i) > Ui(r

n, sn−i)− ε

So putting these 3 inequalities together gives

Ui(r
′
i, s

n
−i) > Ui(r

′
i, s

0
−i)− ε > Ui(r

0, s0−i) + 2ε > Ui(r
n, sn−i) + ε

But we had a premise that rn ∈ B(sn), and thus rni ∈ Bi(s
n
−i) for all n. So this is a contradiction and

so we conclude that B is upper semi-continuous as desired.

This completes the second requirement. The third is easier to show and is quite straightforward.

9



Lemma. For all s ∈ S, the set B(s) is convex

Proof. Let sk ∈ Sk be such that sk = λsk1
+ (1− λ)sk2

where sk1
, sk2

∈ Sk and 0 ≤ λ ≤ 1. We will first
demonstrate that Ui(sk, s−k) = λUi(sk1

, s−k) + (1− λ)Ui(sk1
, s−k) This is easy to show

Ui(s1, · · · , sk, · · · sn) = Ui(s1, · · · , λsk1
+ (1− λ)sk2

, · · · sn)

=
∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 (λsk1
(ak) + (1− λ)sk2

(ak))

 n∏
j=k+1

sj(aj)


=

∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 (λsk1
(ak))

 n∏
j=k+1

sj(aj)


+

∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 ((1− λ)sk2
(ak))

 n∏
j=k+1

sj(aj)


= λ

∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 sk1
(ak)

 n∏
j=k+1

sj(aj)


+ (1− λ)

∑
a∈A

ui(a)

k−1∏
j=1

sj(aj)

 sk2(ak)

 n∏
j=k+1

sj(aj)


= λUi(s1, · · · , sk1 , · · · , sn) + (1− λ)Ui(s1, · · · , sk2 , · · · , sn)

The rest of the proof is straightforward as well. Let s−i ∈ S−i and b1, b2 ∈ Bi(s−i). Then Ui(b1) = Ui(b2)
and so

Ui(λb1 + (1− λ)b2, s−i) = λUi(b1, s−i) + (1− λ)Ui(b2, s−i)

= λUi(b1, s−i) + (1− λ)Ui(b1, s−i)

= Ui(b1, s−i)

Then λb1 + (1 − λ)b2 ∈ Bi(s−i), so Bi(s−i) is convex for all s−i ∈ S−i each player i. Thus, B(s), the
cartesian product of each Bi(s−i) is also convex.

And now we have all the mathematical machinery required to prove Nash’s theorem for the existence of
Nash equilibria for mixed extensions of finite n-person normal form games. The statement is as follows:

Theorem (Nash’s Theorem). Every mixed extension of a finite n-person normal-form game has a Nash
equilibrium

Proof. Proof Let (N,S, U) be a mixed extension of a finite n-person normal-form game. It has been
shown that S is a compact and convex set, and that the function B : S → S is upper-semi continuous.
Moreover, B(s) is convex for every s ∈ S. Then applying Kakutani’s fixed point theorem, there exists
s0 ∈ S such that s0 ∈ B(s0). This is a Nash equilibrium as desired.

10


