
Lagrange’s Theorem: Statement 
 
Definition: The Cardinality of a set is how many objects it contains. Formally, two sets have 
the same cardinality if there exists a bijection between them. The order of a group is the 
amount of elements it contains.  
 
 
Lemma: Let H be a subgroup of a finite group G. Then for any 𝑔	!, 𝑔" ∈ 𝐺, |𝑔!𝐻| = |𝑔"𝐻|. 
That is, any arbitrary pair of left cosets of 𝐻 in 𝐺 have the cardinality. 
 
Proof: 
Let 𝑔 ∈ 𝐺, where G is a finite group and let ℎ ∈ 𝐻, where 𝐻 is a subgroup of G. It suffices to 
show that there exists a bijection between the elements of 𝐻 and 𝑔𝐻. Define the functions: 
 

𝐴:	𝐻	 → 𝑔𝐻, 𝐴(ℎ) = 𝑔ℎ 
𝐵: 𝑔𝐻 → 𝐻,𝐵(𝑔ℎ) = 𝑔#!𝑔ℎ 

 
It is easy to see that 𝐴 ∘ 𝐵(𝑔ℎ) = 𝐴(𝑔#!𝑔ℎ) = 𝐴(ℎ) = 𝑔ℎ	 and 𝐵 ∘ 𝐴(ℎ) = 𝐵(𝑔ℎ) =
	𝑔!𝑔ℎ = ℎ. So, because both 𝐴 ∘ 𝐵 and 𝐵 ∘ 𝐴 are the identity mappings, they are inverses of 
each other. Hence, they are bijections between 𝐻 and 𝑔𝐻, so 𝐻 and 𝑔𝐻 have the same 
cardinality. 
Consequently, since the cardinality of any arbitrary left coset is equal to that of the subgroup 
it is formed by, any of this subgroup’s cosets must have the same cardinality. 

∎ 
 
The advantage of defining equal cardinalities in this way rather than just counting them or 
defining it intuitively, is that this definition also generalises to infinite sets. However, we are 
not dealing with infinite sets here, as Lagrange’s theorem doesn’t apply to them. Infinity being 
divisible by some quantity does not have any rigorous meaning at this point. 
 
 
Lemma: Given a subgroup 𝐻 ≤ 𝐺, the distinct cosets of 𝐻 in 𝐺 are disjoint, and their union 
covers 𝐺. 
 
Proof: 
Since 𝐻	is a subgroup, it contains the identity element 𝑒. Then for any 𝑔 ∈ 𝐺 we of course 
have 𝑔 = 𝑔𝑒. But since 𝑒 is in 𝐻, we have 𝑔 = 𝑔𝑒 ∈ 𝑔𝐻. So any element of 𝐺 is in at least one 
of the cosets of 𝐻. So the union of the cosets covers 𝐺. 
 
To prove that the distinct cosets are disjoint, assume that 𝑔!𝐻	and 𝑔"𝐻,	where 𝑔!, 𝑔" ∈ 𝐺, 
are distinct cosets of 𝐻 in 𝐺 which contain a common element	𝑥. Then for some ℎ!, ℎ" ∈ 𝐻, 
it must be true that 𝑥 = 𝑔!ℎ! = 𝑔"ℎ".	Multiplying on both sides by the inverse of ℎ!,	we have 
𝑔! = 𝑔"ℎ"ℎ!#!. Then if we take any arbitrary element from the coset 𝑔!𝐻, which may be 
written as 𝑔!ℎ where ℎ is an element of 𝐻, we have 𝑔!ℎ = 𝑔"ℎ"ℎ!#!ℎ. But since 𝐻	is closed 
under the operation, ℎ"ℎ!#!ℎ is in 𝐻 as well. So then 𝑔!ℎ = 𝑔"ℎ"ℎ!#!ℎ ∈ 𝑔"𝐻. This shows that 
any element in the coset 𝑔!𝐻 must also be contained in the coset 𝑔"𝐻. Using the same steps, 



it is also easy to show that any element of 𝑔"𝐻 must also be in 𝑔!𝐻. This means that the two 
cosets are exactly the same, so we have a contradiction. 

∎ 
 
Lagrange’s Theorem: Let G be a finite group, and H be a subgroup of G. Then, the order of H 
divides that of G. 
 
Proof: 
This result easily follows from the previous lemma. Since the set of left cosets in G are a 
partition of G, the sum of each of their cardinality is that of G. But since we have shown that 
each left coset has the same cardinality, if follows that |𝐺| = [𝐺:𝐻]|𝐻|. Hence, [𝐺: 𝐻] = |%|

|&|
.  
∎ 

 
The converse of this theorem states that whenever 𝑑 is a divisor of |𝐺|, there exists a 
subgroup 𝐻 ≤ 𝐺 such that |𝐻| = 𝑑.	This is not in fact true in general. The smallest 
counterexample is in the group of rotational symmetries of a tetrahedron. The rotational 
symmetries form a group of order 12, but there is no subgroup of order 6. 

  

Applications in number theory 
 
It is not hard to see that the set of integers are closed under multiplication modulo 𝑛, the 
binary operation is associative, and that the integers 1	(𝑚𝑜𝑑	𝑛) are the identity element. Is 
it also the case that there exists and identity and inverse for each element?  
If 𝑚 is coprime to 𝑛, then gcd(𝑚, 𝑛) = 1.	Then by Bezout’s lemma, there exist integers 𝑎 and 
𝑏 such that 𝑎𝑚 + 𝑏𝑛 = 1, and hence, 𝑎𝑚 = 1 − 𝑏𝑛 = 1	(𝑚𝑜𝑑	𝑛). This makes 𝑎 reduced 
modulo 𝑛	the inverse for 𝑚, so all integers coprime to 𝑛 have an inverse less than 𝑛. 
Moreover, 𝑎 must also be coprime. It is also true that multiplying to integers coprime. to 𝑛 
and reducing modulo 𝑛, we arrive at another integer coprime to 𝑛. Since the set of integers 
less than and coprime to	𝑛 under the operation of multiplication modulo 𝑛 is closed under 
the operation, contains the identity element 1, and is closed under taking inverses, this set in 
fact forms a group. This is known as the multiplicative group of integers modulo 𝑛, and has 
an order of 𝜑(𝑛).  
 
 
Euler’s Theorem: If a and n are coprime integers, then 𝑎'()) ≡ 1	(𝑚𝑜𝑑	𝑛). 
 
Proof: 
Let 𝑎 be an element of the multiplicative group of integers modulo 𝑛. Now consider the set 
{𝑎, 𝑎", 𝑎+, 𝑎,, … }. Since the group was finite, this set must also be. So there exist smallest 
integers 𝑞 < 𝑟 such that 𝑎- = 𝑎. 	(𝑚𝑜𝑑	𝑛). Since 𝑎 and 𝑛	are coprime, 𝑎 has an inverse 
element 𝑎#!. We can multiply on both sides by this 𝑟	times to arrive at 𝑎-#. = 	1. Let 𝑘 =
𝑞 − 𝑟 so 𝑎/ 	is the identity element. It is also evident that for any integer 𝑚 ≤ 𝑘, 	𝑎0𝑎/#0 =
𝑎/ = 1. So 𝑎/#0 acts as an inverse to every 	𝑎0.  It is now evident that {𝑎, 𝑎", 𝑎+, 𝑎,, … , 𝑎/}	is 
a subgroup of the multiplicative group of integers modulo 𝑛. 



Then since the order of this subgroup is 𝑘, by Lagrange’s theorem it must divide the 𝜑(𝑛), the 
order of the multiplicative group of integers modulo 𝑛. So then it must be true that for some 
integer 𝑀, 𝑘𝑀 = 𝜑(𝑛). We then have 
 

𝑎'()) = 𝑎/1 = (𝑎/)1 = 11 = 1	(𝑚𝑜𝑑	𝑛) 
∎ 

 
Note that this is a generalisation of Fermat’s little theorem. Fermat’s little theorem is the 
special case where 𝑛 is prime, so that 𝜑(𝑛) = 𝑛 − 1 and hence, 
 

𝑎)#! = 1	(𝑚𝑜𝑑	𝑛) 
𝑎) = 𝑎	(𝑚𝑜𝑑	𝑛) 

 
 
 


